Composing in Whole Tone Scale

FMT

Our content relies on support from our readers. This means if you click on some of our links and make a purchase, we'll receive a small commission. You won't pay a penny more, so no worries!  Learn More

black sailing boat digital wallpaper

Cover Photo by Johannes Plenio

This is an excerpt lesson from the [STUDY PACK] Scales for Film Composers. Complete editions of video lessons, music scores (PDF), score analysis (PDF), and HD music examples used in this lesson can be viewed here.

The character of a scale is greatly influenced by the spacing of its notes. In this post, we saw how a simple variation of a half-step can turn a Major scale into various modes. When applied to a composition, each subtle change can greatly impact the mood.

The use of a Whole Tone scale is possibly one the easiest and quickest methods of broadening a composer’s musical arsenal. You have probably heard the sound of a Whole Tone scale in countless film, TV, and video game soundtracks. Stereotypically, the harp plays an ascending whole-tone scale to depict a dream sequence. However, the notes of the scale can be combined in different ways to offer sophistication.

opened book beside crystal ball
Photo by Dollar GillThe whole-tone scale, despite its simplicity, can easily evoke a magical feeling in music.

Introduction

– Scale Structure: 1 2 3 ♯4 ♯5 ♯6 

– Symmetrical Scale with a Whole-Step Between the Notes

The structure of the scale is very straightforward. Every note in the scale is a whole step apart, hence the name “whole tone.” Since the Western octave is divided into twelve semitones, and since a whole step is equal to two semitones, a whole tone scale has a total of six notes. As a result, there are two pitch collections for the whole tone scale (see Fig. L). For the sake of convenience, we categorized them into two groups: Pitch Collection A and B. In either scale, the notes are all equidistant from one another, creating a magical, often otherworldly sound. 

We wrote one piece for each pitch collection below.

Fig. L Two Pitch Groups for Whole Tone scales

Composing with Whole Tone Scale

Ex. 4-7 Composition Example #1 (Pitch Collection A)

Analysis of Ex. 4-7

In Ex. 4-7, we used an F♯ Whole Tone scale (Pitch Collection A, starting from F♯) to create a short piece depicting a mysterious and otherworldly scene. Due to the nature of the scale, our sense of tonic is a little more elusive than usual.

Overall, the piece is more accompanimental than melodic. It begins with a brief The low woodwind sustains in measure 1 help us hear the low F♯ as a tonic. The harmony in the first measure resembles an F♯7, or more specifically F♯+7(♯11) (❶)*. As the bass moves, the harmony in each measure sounds a bit like a “dominant seventh” chord. However, these chords are examples of non-functional harmony. Lacking any clear dominant-tonic resolution, these harmonies seem to float from one to the next, contributing to the magical nature of the piece.

Aside from the harmony, the keyboard and strings play a few different rhythmic patterns that overlap to create a quirky, unpredictable feeling. With a time signature of 9/8, the upper strings repeat the same nine-beat pattern in each measure, consisting of a 4 note pattern followed by a 5 note pattern. The low strings divide each measure into a pattern of 4-3-2* as they move from one note to the next. 

Tips) F♯+7(♯11) harmony in measure 1The first few notes of the keyboard and strings outline the following notes, which can be arranged into a chord as follows: F♯ (tonic), A♯ (3rd), C♮ (equivalent to B♯, or ♯11), D♮ (equivalent to C𝄪, or ♯5), and E (♭7)
Tips) 4-3-2 Rhythm PatternTo be clear, the 4-3-2 rhythm pattern in the low strings means that in measure 1, we hear the first F♯, then four (4) beats (eighth notes) until we hear the next note, then three (3) beats until we hear the final note, which lasts for two (2) beats.

Meanwhile, the melody in  the upper keyboard alternates between a 4-3-2 pattern (measures 1 and 3) and a 4-2-3 pattern (measures 2 and 4). These subdivisions are derived from the highest notes in the measure, which stand out almost as a melody when doubled by bell synth. Despite these variations, we beamed the keyboard and strings in a 4-3-2 pattern to match the way the bass divides the meter into small groups of beats.

Furthermore, notice the timing of the lower keyboard and the accented notes in both staves. They play a new keyboard chord every eight beats (❷). Since each measure has nine beats, these chords don’t line up at beat 1 in every measure. This 8-against-9 rhythmic complexity is a good example of polymeter*. You can also hear this effect in the isolated piano recording in Fig. M.

Fig. M Isolated Keyboard Track from Ex. 4-7
Tips) Polymeter
When a piece of music contains multiple meters that overlap with the same subdivision, we call this polymeter. In Ex. 4-7, when counting by eighth notes, the strings and upper keyboard play musical patterns that add up to nine (9) over and over. At the same time, the lower piano chords and accents occur after every eight (8) counts. In both cases, the eighth note is like our unit of measure to determine these patterns, and so they share the same “subdivision.” Thus, when counting by eighth notes, we get a meter of 9 over a meter of 8, or polymeter. Polymeters often create interesting rhythms and syncopations.

👉 Polymeter in the Music of the Matrix
👉 What is a polyrhythm? Learn with Musical Examples

Ex. 4-8 Composition Example #2 (Pitch Collection B)

Analysis of Ex.4-8

In Ex. 4-8, we use a C♯ Whole Tone scale (Pitch Collection B, starting from C♯) to create another mysterious piece. Here again, the sound of the whole tone scale lends a curious and uncertain quality to the mood of the piece, almost like a question mark. Two sections comprise this short piece, as detailed below.

Due to the structure of the scale (sequential whole steps), we can use scale notes to create augmented chords.

Measures 1–4

In measure 1, the strings and lower piano outline C♯ and F in octaves, making them prominent. These string swells in particular add a bit of tension and intrigue. Meanwhile, upper piano and bells provide an arpeggiated backdrop(❶), repeated in every measure, using the notes B, D♯, F, and A. The harmony is a little ambiguous, but that is an intentional decision for this mystical, mysterious setting. However, the reinforced C♯ (1) and F (3) from strings/piano combine with the high piano A (♯5) to spell out a C♯ augmented chord*. We generally perceive C♯ as a tonal center.

In measures 3-4, the string octaves have shifted from F up to A (the ♯5 of C♯aug), and the middle note has shifted up to D♯. Notice the sneaky bassoon entrance in measure 4, sustaining our “tonic” in the lower register for the first time. So far, the only scale note we have not used is G. We can use this omission to our advantage in the next section.

Measures 5–8

Starting in measure 5, the strings and piano shift and assert the note G for the first time(❷). Piano restates the arpeggios from the first four measures, this time transposed down a major third to G, B, C♯, and F. By omitting G earlier, we now have a new melodic space to explore, which can help maintain a novel experience for the listener.

Tips) C♯ Augmented Chord
Formally, we might spell this chord as D♭-F-A, simply so the notes are placed thirds apart on the staff. However, C♯ is enharmonic to D♭, and the chord will sound the same regardless of the spelling. Alternatively, if you are a daring person, you could spell the chord as C♯-E♯-G𝄪.

[Study Pack]

Leave a Comment